专业:储能科学与工程/化学/能源化工
邮箱:lgwang_246@tju.edu.cn
办公地址:天津市南开区天津大学卫津路校区11教学楼217办公室
职称:副研究员 博士生导师
【概况】
王立刚,男,理学博士(北京大学),天津大学,副研究员,博士生导师,ORCID: 0000-0002-9382-1865。荣获清华大学“水木学者”,中国化学会会员等荣誉称号。目前担任教育部学位论文评审专家。博士毕业于北京大学,随后加入清华大学李亚栋院士和王定胜教授课题组担任助理研究员。目前在天津大学从事教学科研工作,聚焦国家“双碳”重大战略目标,面向世界科技前沿和国家重大需求。集中于能源催化转化(如电解水制氢,燃料电池,CO2电还原等)与环境资源化(如废弃塑料、贵金属回收利用等)的原子级催化剂可控构筑与合成,注重催化反应过程、机理路径及先进材料的理性设计研究,同时注重结合大科学装置原位技术(如XAS、SR-FTIR等)揭示催化体系的反应原理、服役机制以及探索解决器件应用问题。目前在 Nat. Sustain.、Nat. Commun.、J. Am. Chem. Soc.、 Angew. Chem. Int. Ed.、Adv. Mater.、Energy Environ. Sci.、Adv. Energy Mater.等发表高水平SCI论文40余篇,ESI高被引论文5篇,单篇最高引用240+余次。先后主持和参与国家自然科学基金面上项目、京津冀基础研究项目、中国博士后科学基金面上项目、清华大学高层次人才计划“水木学者”项目、中石油委托项目、国家重点实验室开放基金及北京市联合基金项目等10余项,累计科研经费350余万元,授权中国发明专利 3项。其中,多项研究成果被新华网、MaterialsViews中国等传播和推广。另外,也多次参加国内外学术会议,并被邀请作学术报告。目前担任Chin. Chem. Lett.编委,Transactions of Tianjin University客座编辑,Nano-Micro Lett.,Carbon Neutralization,J. Electrochem.(电化学),Exploration等期刊青年编委,学术编辑等。
【教育背景】
2016年9月 至 2021年7月 北京大学无机化学专业(博士) 导师:孙俊良 教授
【学术经历】
2024年4月 至 今, 天津大学, 分子+研究院, 副研究员 2021年10 至 2024年3月, 清华大学, 化学系, 助理研究员 2021年7月 至 2021年10月 北京大学, 化学与分子工程学院,科研助理
【讲授课程】
【教学成果】
【研究方向】
1、多尺度(单原子、团簇及纳米晶)催化剂设计合成、 2、能源催化转化(如电解水制氢,燃料电池,CO2电还原)与环境资源化(如废弃塑料、贵金属回收利用等) 3、原位技术(如XAS、SR-FTIR、Raman等)结合DFT揭示催化体系的反应原理及器件优化
【学术兼职】
2025,教育部学位论文评审专家 2025-2028,Chin. Chem. Lett.编委 2025,Transactions of Tianjin University客座编辑 2025-2027,Nano-Micro Lett. 青年编委 2024-2026,Carbon Neutralization青年编委 2025-2026,J. Electrochem.(电化学)青年编委 2023-至今,Exploration青年编委,学术编辑
【科研项目及成果】
作为项目负责人,负责的主要项目有(下面列出近5年负责的项目,在此前负责的项目略), 1. 2026-2029,多尺度催化剂构筑及在PEM电解水中机制研究,国家自然科学基金面上项目,50万元 2. 2024-2027,非铱高效PEM电解水催化剂设计及其应用研究, 京津冀专项, 60万元 3. 2025-2028,催化剂构筑和PEM电解水机制研究,中石油项目, 50万元 4. 2025-2026,磁性催化剂可控构筑及电催化转化, 先进能源材料化学教育部重点实验室开放基金,5万元 5. 2021-2023,面向电解水制氢的单原子催化剂制备研究, 清华大学“水木学者”计划,60万元 6. 2022-2023,原子级分散非贵金属催化剂构筑及性能研究, 中国博士后科学基金面上项目, 8万元
【代表性论著】
1. Co-Co Dinuclear Active Sites Dispersed on Zirconium-doped Heterostructured Co9S8/Co3O4 for High-current-density and Durable Acidic Oxygen Evolution”, Angew. Chem., Int. Ed. 2023, 62, e202314185 (IF: 16.6) . 2. Atomic-Level Asymmetric Tuning of the Co1–N3P1 Catalyst for Highly Efficient N-Alkylation of Amines with Alcohols, J. Am. Chem. Soc. 2024, 146, 20518 (IF: 15). 3. Boosting Efficient and Sustainable Alkaline Water Oxidation on W-CoOOH-TT Pair Sites Catalyst Synthesized via Topochemical Transformation, Adv. Mater. 2024, 36, 2302642 (IF: 32.086). 4. Microenvironment Engineering of Covalent Organic Frameworks based Single/Dual-Atom Catalysts toward Sustainable Energy Conversion and Storage, Energy Environ. Sci., 2024, 17, 8482-8528. (IF: 32.4). 5. Atomically Dispersed Mo Supported on Metallic Co9S8 Nanoflakes as an Advanced Noble-Metal-Free Bifunctional Water Splitting Catalyst Working in Universal pH Conditions, Adv. Energy Mater. 2020, 10, 1903137 (IF: 29.698). 6. Harnessing Electrocatalytic Coupling of Carbon Dioxide and Methanol for High-Efficiency Formic Acid Production, Angew. Chem., Int. Ed. 2025, Accepted. 7. Single-atom catalysis for carbon neutrality, Carbon Energy 2022, 4, 1021. 8. Stable, Efficient, Copper Coordination Polymer-Derived Heterostructured Catalyst for Oxygen Evolution under pH-Universal Conditions, ACS Appl. Mater. Interfaces 2021, 13, 25461 (IF: 10.383). 9. The reformation of catalyst: from a trial-and-error synthesis to rational design, Nano Research 2023, 17, 3261 (IF:10.269). 10. Advances of earth-abundant cobalt-based single-atom catalysts for acidic oxygen evolution by electrolysis, Nano Research 2025, DOI: 10.26599/NR.2025.94907593. 11. Atomic-Precision Engineering of Single-Atom Alloy Materials for Green Catalysis and Energy Conversion, ACS Materials Lett. 2025, 7, 1654−1697. 12. Design Principles of Single-Atom Catalysts Anchored over Porous Materials for Green Catalysis and Conversion, Nano Research 2025, 18, 94907137. 13. Recent advances in dual-atom catalysts for energy catalysis, Rare Metals, 2024, DOI:10.1007/s12598-024-02911-6. (IF: 9.6). 14. Small-Scale Big Science: From Nano- to Atomically Dispersed Catalytic Materials, Small Sci. 2022, 2, 2200036 (IF: 12.7). 15. Zr-Doped β‑In2S3 Ultrathin Nanoflakes as Photoanodes: Enhanced Visible-Light-Driven Photoelectrochemical Water Splitting, ACS Sustainable Chem. Eng. 2016, 4, 2606 (IF: 9.224). 16. Carbon-shell-decorated p-semiconductor PbMoO4 nanocrystals for efficient and stable photocathode of photoelectrochemical water reduction, J. Power Sources 2016, 319, 210 (IF: 9.794). 17. Ultrathin two-dimensional β-In2S3 nanocrystals: oriented-attachment growth controlled by metal ions and photoelectrochemical properties, J. Mater. Chem. A 2015, 3, 11294 (IF: 14.511). 18. Heterostructure of Au nanocluster tipping on a ZnS quantum rod: controlled synthesis and novel luminescence, Nanotechnology 2015, 26, 325702 (IF: 3.953). 19. Two-dimensional FeS nanoflakes: synthesis and application to electrochemical sensor for mercury(II) ions, J Nanopart. Res. 2015, 17, 393 (IF: 2.533). 20. Recent advances of single-atom catalysts in CO2 conversion, Energy Environ. Sci. 2023, 16, 2759 (IF: 32.5). 21. Molybdenum Oxide Nanosheets with Tunable Plasmonic Resonance: Aqueous Exfoliation Synthesis and Charge Storage Applications , Adv. Funct. Mater. 2019, 29, 1806699 (IF: 19.0). 22. Boosting Electrochemical Styrene Transformation via Tandem Water Oxidation over a Single-Atom Cr1/CoSe2 Catalyst, Adv. Mater. 2022, 34, 2200302 (IF: 32.086). 23. Atomically Dispersed Palladium Catalyst for Chemoselective Hydrogenation of Quinolines, Nano Lett. 2024, 24, 12666 (IF: 10.2). 24. Encapsulation of Pd Single-Atom Sites in Zeolite for Highly Efficient Semihydrogenation of Alkynes, J. Am. Chem. Soc., 2024, 146, 24033 (IF: 15). 25. Pd-Mn/NC dual single-atomic sites with hollow mesopores for highly efficient semi-hydrogenation of phenylacetylene, J. Am. Chem. Soc., 2024, 146, 2132 (IF: 15). 26. Engineering the Lewis Acidity of Fe Single-Atom Sites via AtomicLevel Tuning of Spatial Coordination Configuration for Enhanced Oxygen Reduction, J. Am. Chem. Soc., 2025, 147, 6914 (IF: 15). 27. Achieving ultrahigh electrochemical performance by surface design and nanoconfined water manipulation, Natl. Sci. Rev. 2022, 9, nwac079 (IF: 20.6). 28. Achieving Highly Efficient Catalysts for Hydrogen Evolution Reaction by Electronic State Modification of Platinum on Versatile Ti3C2Tx (MXene), ACS Sustainable Chem. Eng. 2019, 7, 4266 (IF: 9.224). 29. Self-assembly synthesis of graphene oxide double-shell hollow-spheres decorated with Mn3O4 for electrochemical supercapacitors, Carbon 2016, 107, 100 (IF: 10.9). 30. Electronegativity Induced d ‐Band Center Offset for Pt‐Rh Dual Sites in High‐Entropy Alloy Boosts Liquid Fuels Electrooxidation, Adv. Energy Mater. 2024, 14, 2304515. (IF: 29.698). 31. Cobalt diselenide (001) surface with short-range Co-Co interaction triggering high-performance electrocatalytic oxygen evolution , Nano Res. 2021, 14, 4848 (IF:10.269). 32. Heterostructure of AuAg nanoparticles tipping on Ag2S quantum tubes, Chem. Commun. 2015, 51, 11818 (IF: 4.90). 33. One-pot synthesis of Cu-modified HNb3O8 nanobelts with enhanced photocatalytic hydrogen production, J. Mater. Chem. A 2018, 6, 10769 (IF: 14.511). 34. Discovery of Layered Indium Hydroxide via a Hydroperoxyl Anion Coordinated Precursor at Room Temperature, Chem. Eur. J. 2018, 24, 15491 (IF: 4.30). 35. Facile Water-Based Strategy for Synthesizing MoO3-x Nanosheets: Efficient Visible Light Photocatalysts for Dye Degradation, ACS Omega 2018, 3, 2193 (IF: 4.10). 36. Phase transfer preparation of ultrasmall MnS nanocrystals with a high performance MRI contrast agent, RSC Adv. 2016, 6, 6878 (IF: 3.90). 37. Synthesis of ZnS ultrathin nanowires and photoluminescence with Mn2+ doping, Mater. Lett. 2015, 148, 151 (IF: 2.533). 38. High-performance lithium sulfide cathode made by using molten lithium polysulfides and ZIF-67, J. Alloy. Compd. 2025, 1011, 178355.